2018-02-12

Angiotensin II Type 1 Receptor-associated Protein Inhibits Angiotensin II-induced Insulin Resistance with Suppression of Oxidative Stress in Skeletal Muscle Tissue

Enhancement of AT1 receptor-associated protein (ATRAP) in adipose tissue improves high fat diet (HFD)-induced visceral obesity and insulin resistance, and suppresses adipose oxidative stress. However, HFD loading is not a direct stimulatory factor for AT1 receptor. In the present study, we investigated the effect of chronic, low-dose angiotensin II (Ang II) stimulation on glucose and lipid metabolism in mice and functional role of ATRAP.
2018-02-08

Human iPSC Derived Posterior Gut Progenitors Are Expandable and Capable of Forming Gut and Liver Organoids

Early endoderm progenitors naturally possess robust propagating potential to develop majority of meter-long gastrointestinal tracts and are therefore considered as a promising source for therapy. Here, we demonstrated the reproducible generation of human CDX2+ posterior gut endoderm cells (PGECs) from five induced pluripotent stem cell clones by manipulating FGF, TGF and Wnt signaling.
2018-01-26

Biallelic Variants in CNPY3, Encoding an Endoplasmic Reticulum Chaperone, Cause Early-Onset Epileptic Encephalopathy

Early-onset epileptic encephalopathies, includingWest syndrome (WS), are a group of neurological disorders characterized by developmental impairments and intractable seizures from early infancy. We have now identified biallelic CNPY3 variants in three individuals with WS; these include compound-heterozygous missense and frameshift variants in a family with two affected siblings (individuals 1 and 2) and a homozygous splicing variant in a consanguineous family (individual 3).
2018-01-16

Integrative Analyses of De Novo Mutations Provide Deeper Biological Insights into Autism Spectrum Disorder

Recent studies have established important roles of de novo mutations (DNMs) in autism spectrum disorders (ASDs). Here, we analyze DNMs in 262 ASD probands of Japanese origin and confirm the “de novo paradigm” of ASDs across ethnicities. Based on this consistency, we combine the lists of damaging DNMs in our and published ASD cohorts (total number of trios, 4,244) and perform integrative bioinformatics analyses. Besides replicating the findings of previous studies, our analyses highlight ATP-binding genes and fetal cerebellar/striatal circuits.