Genome-Wide Association Study in Asians Identifies Novel Loci for High Myopia and Highlights a Nervous System Role in Its Pathogenesis

We identified 9 loci with genome-wide significance (P < 5.0 × 10–8). Three loci were previously reported myopia-related loci (ZC3H11B on 1q41, GJD2 on 15q14, and RASGRF1 on 15q25.1), and the other 6 were novel (HIVEP3 on 1p34.2, NFASC/CNTN2 on 1q32.1, CNTN4/CNTN6 on 3p26.3, FRMD4B on 3p14.1, LINC02418 on 12q24.33, and AKAP13 on 15q25.3). The GO analysis revealed a significant role of the nervous system related to synaptic signaling, neuronal development, and Ras/Rho signaling in the pathogenesis of high myopia.

Interpreting Diagnostic Tests for SARS-CoV-2

The pandemic of coronavirus disease 2019 (COVID-19) continues to affect much of the world. Knowledge of diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still evolving, and a clear understanding of the nature of the tests and interpretation of their findings is important.

A superelastochromic crystal

Chromism—color changes by external stimuli—has been intensively studied to develop smart materials because of easily detectability of the stimuli by eye or common spectroscopy as color changes. Luminescent chromism has particularly attracted research interest because of its high sensitivity. The color changes typically proceed in a one-way, two-state cycle, i.e. a stimulus-induced state will restore the initial state by another stimuli.

Shank2 Binds to aPKC and Controls Tight Junction Formation with Rap1 Signaling during Establishment of Epithelial Cell Polarity

Epithelial cells establish apicobasal polarity by forming tight junctions (TJs) at the apical-lateral boundary, which play fundamental roles in physiological functions. An evolutionarily conserved atypical protein kinase C (aPKC)-partitioning defective (PAR) complex functions as a platform for TJ assembly during cell polarity establishment.