2020-01-10

Women in Data Science (WiDS) Tokyo @ Yokohama City University

The Women in Data Science (WiDS) initiative aims to inspire and educate data scientists worldwide, regardless of gender, and to support women in the field. WiDS is administered by the Institute for Computational & Mathematical Engineering, Stanford University, USA. The WiDS conference, associated events, and data challenges are all aimed at nurturing human resources in the field of data science.
2019-12-03

A GM1b/asialo‐GM1 oligosaccharide‐binding R‐type lectin from purplish bifurcate mussels Mytilisepta virgata and its effect on MAP kinases

A 15‐kDa lectin, termed SeviL, was isolated from Mytilisepta virgata (purplish bifurcate mussel). SeviL forms a noncovalent dimer that binds strongly to ganglio‐series GM1b oligosaccharide (Neu5Acɑ2‐3Galβ1‐3GalNAcβ1‐4Galβ1‐4Glc) and its precursor, asialo‐GM1 (Galβ1‐3GalNAcβ1‐4Galβ1‐4Glc). SeviL also interacts weakly with the glycan moiety of SSEA‐4 hexaose (Neu5Acα2‐3Galβ1‐3GalNAcβ1‐3Galα1‐4Galβ1‐4Glc). A partial protein sequence of the lectin was determined by mass spectrometry, and the complete sequence was identified from transcriptomic analysis.
2019-11-26

Loss of Pancreatic E-Cadherin Causes Pancreatitis-Like Changes and Contributes to Carcinogenesis

E-cadherin (Cdh1) is a key molecule for adherence required for maintenance of structural homeostasis. Loss of E-cadherin leads to poor prognosis and the development of resistance to chemotherapy in pancreatic cancer. Here, we evaluated the physiological and pathologic roles of E-cadherin in the pancreas.
2019-10-11

Structural Mechanisms Underlying Activity Changes in an AMPA-type Glutamate Receptor Induced by Substitutions in Its Ligand-Binding Domain

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors produce postsynaptic current by transmitting an agonist-induced structural change in the ligand-binding domain (LBD) to the transmembrane channel. Receptors carrying T686S/A substitutions in their LBDs produce weaker glutamate-evoked currents than wild-type (WT) receptors.