Significance
A variety of cellular functions are driven by actin, which undergoes cyclic transitions between the monomeric G-form and the filamentous F-form. To gain insights into actin dynamics, the mechanism by which the energy is supplied by the ATP hydrolysis reaction in the F-form actin must be elucidated. This has been hampered by the lack of actin filament structures at atomic resolutions. Here, we have crystallized actin molecules trapped in the F-form without forming filaments, and based upon these structures we determined the reaction path by quantum mechanics calculations. The results are consistent with previous biochemical data. Remarkably, the hydrolysis reaction mechanism is essentially identical to those of motor proteins, while the process of Pi release is distinct.