Health-Med

2020-01-29

Compound lights up brain receptors in PET scans

A radiotracer specifically binds to a major class of brain receptors when injected into living rats and humans, lighting them up in PET scans. The compound, called [11C]K-2, was designed and tested by a large team of scientists in Japan, led by Professor Takuya Takahashi of the department of physiology at Yokohama City University Graduate School of Medicine. It shows promise for diagnosing and treating epilepsy and for improving understanding of psychiatric diseases. Details of the team’s findings were published in the journal Nature Medicine.
2019-11-26

Loss of Pancreatic E-Cadherin Causes Pancreatitis-Like Changes and Contributes to Carcinogenesis

E-cadherin (Cdh1) is a key molecule for adherence required for maintenance of structural homeostasis. Loss of E-cadherin leads to poor prognosis and the development of resistance to chemotherapy in pancreatic cancer. Here, we evaluated the physiological and pathologic roles of E-cadherin in the pancreas.
2019-10-11

Structural Mechanisms Underlying Activity Changes in an AMPA-type Glutamate Receptor Induced by Substitutions in Its Ligand-Binding Domain

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors produce postsynaptic current by transmitting an agonist-induced structural change in the ligand-binding domain (LBD) to the transmembrane channel. Receptors carrying T686S/A substitutions in their LBDs produce weaker glutamate-evoked currents than wild-type (WT) receptors.
2019-10-03

Oxidative stress-responsive apoptosis inducing protein (ORAIP) plays a critical role in cerebral ischemia/reperfusion injury

Oxidative stress is known to play a critical role in the pathogenesis of various disorders, especially in ischemia/reperfusion (I/R) injury. We identified an apoptosis-inducing humoral factor and named this novel post translationally modified secreted form of eukaryotic translation initiation factor 5A (eIF5A) “oxidative stress-responsive apoptosis inducing protein” (ORAIP). The purpose of this study was to investigate the role of ORAIP in the mechanisms of cerebral I/R injury.