Teleost fishes exhibit complex sexual characteristics in response to androgens, such as fin enlargement and courtship display. However, the molecular mechanisms underlying their evolutionary acquisition remain largely unknown. To address this question, we analyse medaka (Oryzias latipes) mutants deficient in teleost-specific androgen receptor ohnologs (ara and arb). We discovered that neither ar ohnolog was required for spermatogenesis, whilst they appear to be functionally redundant for the courtship display in males. However, both were required for reproductive success: ara for tooth enlargement and the reproductive behaviour eliciting female receptivity, arb for male-specific fin morphogenesis and sexual motivation. We further showed that differences between the two ar ohnologs in their transcription, cellular localisation of their encoded proteins, and their downstream genetic programmes could be responsible for the phenotypic diversity between the ara and arb mutants. These findings suggest that the ar ohnologs have diverged in two ways: first, through the loss of their roles in spermatogenesis and second, through gene duplication followed by functional differentiation that has likely resolved the pleiotropic roles derived from their ancestral gene. Thus, our results provide insights into how genome duplication impacts the massive diversification of sexual characteristics in the teleost lineage.