Research team led by YCU professor successfully develops a rapid diagnostic test for COVID-19 that can detect antiviral antibodies in patient serum
2020-03-27A superelastochromic crystal
2020-04-14
Date: 7 April 2020
Epithelial cells establish apicobasal polarity by forming tight junctions (TJs) at the apical-lateral boundary, which play fundamental roles in physiological functions. An evolutionarily conserved atypical protein kinase C (aPKC)-partitioning defective (PAR) complex functions as a platform for TJ assembly during cell polarity establishment. However, how this complex converts the spatial cues into a subsequent active unit is unclear. Here, we identify an epithelial isoform of Shank2 as a mediator of the aPKC-PAR complex. Shank2 binds to and colocalizes with aPKC at apical junctional regions of polarized epithelial cells. Shank2 knockdown results in defects in TJ formation. Mechanistically, we find that the N-terminal SPN domain is required for the junctional localization of Shank2 and binds to the active form of Rap1 small GTPase, which is involved in TJ formation. Our findings suggest that a close physical and functional relationship between aPKC and Shank2-active Rap1 signaling serves as the platform for TJ assembly to regulate epithelial cell polarity.
For inquiries regarding this press release