Loss of p53 drives neuron reprogramming in head and neck cancer
2020-02-13[COVID-19] Important Notice for Novel Coronavirus Infection Prevention and Control
2020-02-28
Date: 26 February 2020
Interest in mass spectrometry of highly oxidized dimers from α‐pinene oxidation has increased in the atmospheric chemistry field. Here, we apply high‐resolution collision‐induced dissociation mass spectrometry (HR‐CID‐MS) with an atmospheric pressure ionization source to investigate in detail how α‐pinene‐derived dimers are detected and identified by MS. The resulting HR‐CID spectra and specific fragmentation patterns suggest that a large fraction of dimer ions detected in full‐scan mass spectra can be hydrogen‐bonded artifact clusters and the residual small fraction includes covalently bonded actual dimers. We also show how individual fractions of the artifact clusters and actual dimers are calculated using the HR‐CID spectra.
For inquiries regarding this press release